Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6726, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509209

RESUMO

Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Plântula , Germinação , Selênio/farmacologia , Antioxidantes/farmacologia , Sementes , Clorofila/farmacologia , Prolina/farmacologia
2.
Sci Total Environ ; 923: 171368, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438040

RESUMO

Coastal sediments play a central role in regulating the amount of land-derived reactive nitrogen (Nr) entering the ocean, and their importance becomes crucial in vulnerable ecosystems threatened by anthropogenic activities. Sedimentary denitrification has been identified as the main sink of Nr in marine environments, while anaerobic ammonium oxidation with nitrite (anammox) has also been pointed out as a key player in controlling the nitrogen pool in these locations. Collected evidence in the present work indicates that the microbial biota in coastal sediments from Baja California (northwestern Mexico) has the potential to drive anaerobic ammonium oxidation linked to Mn(IV) reduction (manganammox). Unamended sediment showed ammonification, but addition of vernadite (δMnO2 with nano-crystal size ∼15 Å) as terminal electron acceptor fueled simultaneous ammonium oxidation (up to ∼400 µM of ammonium removed) and production of Mn(II) with a ratio ∆[Mn(II)]/∆[NH4+] of 1.8, which is very close to the stoichiometric value of manganammox (1.5). Additional incubations spiked with external ammonium also showed concomitant ammonium oxidation and Mn(II) production, accounting for ∼30 % of the oxidized ammonium. Tracer analysis revealed that the nitrogen loss associated with manganammox was 4.2 ± 0.4 µg 30N2/g-day, which is 17-fold higher than that related to the feammox process (anaerobic ammonium oxidation linked to Fe(III) reduction, 0.24 ± 0.02 µg 30N2/g-day). Taxonomic characterization based on 16S rRNA gene sequencing revealed the existence of several clades belonging to Desulfobacterota as potential microorganisms catalyzing the manganammox process. These findings suggest that manganammox has the potential to be an additional Nr sink in coastal environments, whose contribution to total Nr losses remains to be evaluated.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Anaerobiose , Sedimentos Geológicos/química , Compostos Férricos , Ecossistema , RNA Ribossômico 16S/genética , México , Óxidos , Oxirredução , Desnitrificação
3.
J Environ Manage ; 319: 115671, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816965

RESUMO

Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios. This work constitutes a state-of-art review that includes the fundamentals of the N-AOM process, new information on process microbiology, bioreactor configurations, and operating conditions for process implementation in WWTP. Potential advantages of the N-AOM process over aerobic methanotrophic biotechnologies are presented, including the potential interrelation of the N-AOM with other nitrogen removal processes within the WWTP, such as the anaerobic ammonium oxidation. This work also addressed the challenges of this biotechnology towards its application at full scale, identifying and discussing critical research niches.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Anaerobiose , Archaea/metabolismo , Reatores Biológicos , Gases de Efeito Estufa/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Nitritos , Oxirredução
4.
Sci Total Environ ; 797: 149228, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346385

RESUMO

Wastewaters contaminated with nitrogenous pollutants, derived from anthropogenic activities, have exacerbated our ecosystems sparking environmental problems, such as eutrophication and acidification of water reservoirs, emission of greenhouse gases, death of aquatic organisms, among others. Wastewater treatment facilities (WWTF) combining nitrification and denitrification, and lately partial nitrification coupled to anaerobic ammonium oxidation (anammox), have traditionally been applied for the removal of nitrogen from wastewaters. The present work provides a comprehensive review of the recent biotechnologies developed in which nitrogen-removing processes are relevant for the treatment of both wastewaters and gas emissions. These novel processes include the anammox process with alternative electron acceptors, such as sulfate (sulfammox), ferric iron (feammox), and anodes in microbial electrolysis cells (anodic anammox). New technologies that couple nitrate/nitrite reduction with the oxidation of methane, H2S, volatile methyl siloxanes, and other volatile organic compounds are also described. The potential of these processes for (i) minimizing greenhouse gas emissions from WWTF, (ii) biogas purification, and (iii) air pollution control is critically discussed considering the factors that might trigger N2O release during nitrate/nitrite reduction. Moreover, this review provides a discussion on the main challenges to tackle towards the consolidation of these novel biotechnologies.


Assuntos
Compostos de Amônio , Purificação da Água , Anaerobiose , Reatores Biológicos , Biotecnologia , Desnitrificação , Ecossistema , Nitrogênio , Oxirredução , Águas Residuárias
5.
Chemosphere ; 278: 130441, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33838410

RESUMO

This work proves the feasibility of employing regular secondary activated sludge for the enrichment of a microbial community able to perform the anaerobic oxidation of methane coupled to nitrate reduction (N-AOM). After 96 days of activated sludge enrichment, a clear N-AOM activity was observed in the resulting microbial community. The methane removal potential of the enriched N-AOM culture was then studied in a stirred tank reactor (STR) operated in continuous mode for methane supply and semi-continuous mode for the liquid phase. The effect of applying nitrate loads of ∼22, 44, 66, and 88 g NO3- m-3 h-1 on (i) STR methane and nitrate removal performance, (ii) N2O emission, and (iii) microbial composition was investigated. Methane elimination capacities from 21 ± 13.3 to 55 ± 12 g CH4 m-3 h-1 were recorded, coupled to nitrate removal rates ranging from 6 ± 3.2 to 43 ± 14.9 g NO3- m-3 h-1. N2O production was not detected under the three nitrate loading rates applied for the assessment of potential N2O emission in the continuous N-AOM process (i.e. ∼22-66 g NO-3 m-3 h-1). The lack of N2O emissions during the process was attributed to the N2O reducing capacity of the bacterial taxa identified and the rigorous control of dissolved O2 and pH implemented (dissolved O2 values ≤ 0.07 g m-3 and pH of 7.6 ± 0.4). Microbial characterization showed that the N-AOM process was performed in absence of putative N-AOM archaea and bacteria (ANME-2d, M. oxyfera). Instead, microbial activity was driven by methane-oxidizing bacteria and denitrifying bacteria (Bacteroidetes, α-, and γ-proteobacteria).


Assuntos
Metano , Microbiota , Anaerobiose , Archaea , Nitratos , Oxirredução
6.
Sci Total Environ ; 750: 141677, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182214

RESUMO

Humic substances (HS) constitute a highly transformed fraction of natural organic matter (NOM) with a heterogeneous structure, which is rich in electron-transferring functional moieties. Because of this feature, HS display a versatile reactivity with a diversity of environmentally relevant organic and inorganic compounds either by abiotic or microbial processes. Consequently, extensive research has been conducted related to the potential of HS to drive relevant processes in bio-engineered systems, as well as in the biogeochemical cycling of key elements in natural environments. Nevertheless, the increase in the number of reports examining the relationship between HS and the microorganisms related to the production and consumption of greenhouse gases (GHG), the main drivers of global warming, has just emerged in the last years. In this paper, we discuss the importance of HS, and their analogous redox-active organic molecules (RAOM), on controlling the emission of three of the most relevant GHG due to their tight relationship with microbial activity, their abundance on the Earth's atmosphere, and their important global warming potentials: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The current knowledge gaps concerning the microbial component, on-site occurrence, and environmental constraints affecting these HS-mediated processes are provided. Furthermore, strategies involving the metabolic traits that GHG-consuming/HS-reducing and -oxidizing microbes display for the development of environmental engineered processes are also discussed.

7.
J Environ Manage ; 270: 110873, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721316

RESUMO

Metals are key materials extensively employed in several industries to produce technological and daily-life products. The mining industry that produces such commodities generates Tons of waste that if not remediated can be transferred to the surrounding environment, thus representing a water, air, and soil pollution threat. In this work, we evaluated the feasibility of microbial sulfate reduction (SR) as a management strategy for this waste. Mine tailings were sampled from two abandoned mining sites located in Sonora (northwestern Mexico) and treated in anaerobic microcosms under SR conditions using anaerobic sludge as the inoculum at two different tailing:inoculum ratios (TIR). Major TIR's were found to be the triggering factor for the highest SR activities observed (73.6 ± 8.8 mg SO42- L-1 day-1). This stimulation was linked to the dissolution of sulfate bearing minerals (anglesite, jarosite, and gypsum) which provided additional sulfate for microbial activity. However, under this condition, longer lag phases for SR were observed, which was potentially due to pH inhibition at early incubation stages (pH ~3.7). Despite this, all biologically SR performing treatments presented important sulfide precipitation which was associated to changes in the mineralogy of the mine tailings. Metals of environmental concern such as As, Cd, Co, Cr and, Pb were detected to have shifted from the aqueous extractable phase to the bound to Fe and Mn oxides and residual phases. This finding was in accordance with the non-detectable concentrations of these metals in the aqueous phase by the end of the biological treatment which proved the effectiveness of this approach. This study provides insights into the promising potential of anaerobic microbes for the environmental management of mine tailings.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Conservação dos Recursos Naturais , Monitoramento Ambiental , Poluição Ambiental/análise , México , Mineração
8.
Front Microbiol ; 11: 587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351467

RESUMO

Humic substances are redox-active organic molecules, which play pivotal roles in several biogeochemical cycles due to their electron-transferring capacity involving multiple abiotic and microbial transformations. Based on the redox properties of humic substances, and the metabolic capabilities of microorganisms to reduce and oxidize them, we hypothesized that they could mediate the anaerobic oxidation of methane (AOM) coupled to the reduction of nitrous oxide (N2O) in wetland sediments. This study provides several lines of evidence indicating the coupling between AOM and the reduction of N2O through an extracellular electron transfer mechanism mediated by the redox active functional groups in humic substances (e.g., quinones). We found that the microbiota of a sediment collected from the Sisal wetland (Yucatán Peninsula, southeastern Mexico) was able to reduce N2O (4.6 ± 0.5 µmol N2O g sed. -1 day-1) when reduced humic substances were provided as electron donor in a close stoichiometric relationship. Furthermore, a microbial enrichment derived from the wetland sediment achieved simultaneous 13CH4 oxidation (1.3 ± 0.1 µmol 13CO2 g sed. -1 day-1) and N2O reduction (25.2 ± 0.5 µmol N2O g sed. -1 day-1), which was significantly dependent on the presence of humic substances as an extracellular electron shuttle. Taxonomic characterization based on 16S rRNA gene sequencing revealed Acinetobacter (a É£-proteobacterium), the Rice Cluster I from the Methanocellaceae and an uncultured archaeon from the Methanomicrobiaceae family as the microbes potentially involved in AOM linked to N2O reduction mediated by humic substances. The findings reported here suggest that humic substances might play an important role to prevent the emission of greenhouse gases (CH4 and N2O) from wetland sediments. Further efforts to evaluate the feasibility of this novel mechanism under the natural conditions prevailing in ecosystems must be considered in future studies.

9.
Sci Total Environ ; 650(Pt 2): 2674-2684, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373050

RESUMO

Key pathways for the anaerobic oxidation of methane (AOM) have remained elusive, particularly in organic rich ecosystems. In this work, the occurrence of AOM driven by humus-catalyzed dissimilatory iron reduction was investigated in sediments from a coastal mangrove swamp. Anoxic sediment incubations supplied with both goethite (α-FeOOH) and leonardite (humic substances (HS)) displayed an average AOM rate of 10.7 ±â€¯0.8 µmol CH4 cm-3 day-1, which was 7 and 3 times faster than that measured in incubations containing only goethite or HS, respectively. Additional incubations performed with 13C-methane displayed Pahokee Peat HS-mediated carbonate precipitation linked to 13CH4 oxidation and ferrihydrite reduction (~1.3 µmol carbonate cm-3 day-1). These results highlight the role of HS on mitigating greenhouse gases released from wetlands, not only by mediating the AOM process, but also by enhancing carbon sequestration as inert minerals (calcite, aragonite and siderite).

10.
Biodegradation ; 29(5): 429-442, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29948518

RESUMO

Availability of fixed nitrogen is a pivotal driver on primary productivity in the oceans, thus the identification of key processes triggering nitrogen losses from these ecosystems is of major importance as they affect ecosystems function and consequently global biogeochemical cycles. Denitrification and anaerobic ammonium oxidation coupled to nitrite reduction (Anammox) are the only identified marine sinks for fixed nitrogen. The present study provides evidence indicating that anaerobic ammonium oxidation coupled to the reduction of sulfate, the most abundant electron acceptor present in the oceans, prevails in marine sediments. Tracer analysis with 15N-ammonium revealed that this microbial process, here introduced as Sulfammox, accounts for up to 5 µg 15N2 produced g-1 day-1 in sediments collected from the eastern tropical North Pacific coast. Raman and X-ray diffraction spectroscopies revealed that elemental sulfur and sphalerite (ZnFeS) were produced, besides free sulfide, during the course of Sulfammox. Anaerobic ammonium oxidation linked to Fe(III) reduction (Feammox) was also observed in the same marine sediments accounting for up to 2 µg 15N2 produced g-1 day-1. Taxonomic characterization, based on 16S rRNA gene sequencing, of marine sediments performing the Sulfammox and Feammox processes revealed the microbial members potentially involved. These novel nitrogen sinks may significantly fuel nitrogen loss in marine environments. These findings suggest that the interconnections among the oceanic biogeochemical cycles of N, S and Fe are much more complex than previously considered.


Assuntos
Compostos de Amônio/metabolismo , Compostos Férricos/metabolismo , Sedimentos Geológicos/química , Nitrogênio/análise , Água do Mar/microbiologia , Sulfatos/metabolismo , Anaerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Elétrons , Ferro/análise , Oxirredução , Enxofre/metabolismo
11.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341676

RESUMO

Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm-3 · day-1 Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year-1 in coastal wetlands and more than 1,300 Tg · year-1, considering the global wetland area.IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Anaerobiose , Antraquinonas/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Oxirredução , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...